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SEPARATION OF CONTACTING SURFACES

IN THERMOELASTIC INTERACTION OF TWO CYLINDERS

WITH TIME-DEPENDENT HEAT RELEASE DUE TO FRICTION

UDC 539.3P. P. Krasnyuk

The problem of a thermoelastic interaction of two cylinders with separation of their contact surfaces
due to local loading of lateral surfaces is formulated and solved. The effect of the multiply connected
contact region is shown to exist under a certain relation between the linear thermal expansion coef-
ficients of the bodies.

Key words: contact interaction, cylinder, heat release due to friction, nonstationary temperature,
separation of contact surfaces.

The contact problem of two interacting hollow cylinders tightly inserted one into the other and compressed
by a load varied along the tribosystem axis was considered in [1] in the axisymmetric formulation. Investigations
into the solution of this problem performed under the assumption of an intimate contact of the cylinders over their
entire surface proved that a load localized within a certain interval can change the sign of the contact stress and,
therefore, give rise to separation zones whose size increases with increasing heat-release intensity, provided that the
thermal expansion coefficient of the inner cylinder is smaller compared to that of the outer cylinder. As the thermal
expansion coefficient of the outer cylinder decreases, simple connectedness of the load-application region no longer
guarantees simple connectedness of the loaded contact region.

Mathematical Formulation of the Problem and Solution Construction. The condition of existence
of separation zones requires the following modification of the problem formulation proposed in [1]: since a loaded
contact zone, a separation zone, and an unloaded contact zone can be identified on the contact surface, individual
thermophysical conditions must be set in each of these zones. In particular, the following conditions must be fulfilled
at r = a0:
— in the loaded contact zone, heat-release condition and the condition of an imperfect thermal contact

λ1∂rT1 − λ2∂rT2 = fω(τ)a0p(z, τ); (1)

λ1∂rT1 + λ2∂rT2 + ha(T1 − T2) = 0; (2)

— in the unloaded contact zone, conditions of an imperfect thermal contact with another value of the thermal
conductivity coefficient

λ1∂rT1 = λ2∂rT2 = −hc(T1 − T2); (3)

— in the separation zone, depending on the chosen model, either the heat insulation conditions on the surfaces

∂rT1 = ∂rT2 = 0, (4)

or the conditions of an imperfect thermal contact through an interlayer

λ1∂rT1 = λ2∂rT2 = −hb(T1 − T2). (5)
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The mechanical conditions at the surface r = a0 in the unloaded contact zone are the postulated equality of the
radial stresses and displacements and the condition of zero shear stress

σ(1)
r = σ(2)

r = −p(z, τ), u1 = u2, τ (1)
rz = τ (2)

rz = 0. (6)

In the separation zone and in the unloaded contact zone, conditions of zero radial and shear stresses are applied:

σ(1)
r = σ(2)

r = 0, τ (1)
rz = τ (2)

rz = 0. (7)

Here, the boundaries between the zones are initially unknown and should be found during the solution construction.
Mathematically, the problem reduces to integration of a system that includes the following differential

equations:
— heat-conduction equation

∂2
rTj + r−1∂rTj + ∂2

zTj = k−1
j ∂τTj ;

— equation of equilibrium

∂rσ
(j)
r + r−1(σ(j)

r − σ(j)
θ ) + ∂zτ

(j)
rz = 0, ∂rτ

(j)
rz + r−1τ (j)

rz + ∂zσ
(j)
z = 0;

— equation of strain consistency

∂rε
(j)
θ + r−1(ε(j)θ − ε(j)r ) = 0, r∂2

zε
(j)
θ + ∂rε

(j)
z = ∂zγ

(j)
rz ;

— the Hooke’s law relations

Ejε
(j)
r = σ(j)

r − νj(σ
(j)
θ + σ(j)

z ) + EjαjTj , Ejε
(j)
θ = σ

(j)
θ − νj(σ(j)

r + σ(j)
z ) + EjαjTj ,

Ejε
(j)
z = σ(j)

z − νj(σ(j)
r + σ

(j)
θ ) + EjαjTj , Ejγ

(j)
rz = 2(1 + νj)τ (j)

rz (j = 1, 2).

The initial conditions are

Tj(r, z, 0) = 0;

the boundary conditions are

r = a1: ∂rT1 = γ1T1, σ(1)
r = −q1(z, τ), τ (1)

rz = 0,

r = a2: ∂rT2 = −γ2T2, σ(2)
r = −q2(z, τ), τ (2)

rz = 0

and contact conditions are (1)–(7).
Hereinafter, r and z are the radial and axial coordinates, τ is the time, p(z, τ) is the contact pressure,

qj(z, τ) is the external load on noncontacting surfaces of the tribosystem, ω(τ) is the relative angular velocity of
revolution, Tj is the temperature, σ(j)

r , σ(j)
θ , and σ

(j)
z are the radial, circumferential, and axial normal pressures,

respectively, τ (j)
rz is the shear stress, ε(j)r , ε(j)θ , and ε(j)z are the radial, tangent, and axial linear strains, respectively,

γ
(j)
rz is the shear strain, u(j)

r is the radial displacement, Ej is Young’s modulus, νj , λj , kj , and αj are Poisson’s
ratio, the thermal conductivity, thermal diffusivity, and linear expansion coefficient, respectively, γj = ᾱj/λj , ᾱj is
the heat-transfer coefficient, f is the friction coefficient, ha, hb, and hc are the thermal conductivities of the three
zones on the contact surface, r = a1 and r = a2 are the outer surfaces of the inner and outer cylinders, respectively,
and r = a0 is the contact surface in the unloaded system; j = 1 and j = 2 refer to the inner and outer cylinders,
respectively.

We reduce the posed problem to a system of integral equations for the contact pressure p(z, τ) and two
functions fj(z, τ) (j = 1, 2) proportional to the heat fluxes at the contact surface:

fj(z, τ) = (−1)j−1∂rTj(a0, z, τ).

Using relations (2.2), (2.4), (2.7), and (2.11) from [1], we write the following expression for the temperature of the
cylinders:

Tj(r, z, τ) =
1
π
∂τ

τ∫
0

∞∫
−∞

fj(t, η) Φj(r, t− z, τ − η) dt dη.
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Here

Φj(r, z, τ) =

∞∫
0

Φ̄j,st(r, ξ) cos(ξz) dξ ∓ π

2
a0

∞∑
m=1

W0(µj,mr, µj,ma0)W0(µj,ma0, µj,ma0)
µj,mN2

j,m

×
2∑

k=1

exp ((−1)kµj,mz) erfc
(
µj,m

√
kjτ + (−1)k z

2
√
kjτ

)
;

Φ̄j,st(r, ξ) = ± 1
ξ

I0(ξr)(ξK1(ξaj)± γjK0(ξaj)) +K0(ξr)(ξI1(ξaj)∓ γjI0(ξaj))
I1(ξa0)(ξK1(ξaj)± γjK0(ξaj))−K1(ξa0)(ξI1(ξaj)∓ γjI0(ξaj))

;

W0(x, y) = J0(x)Y1(y)− Y0(x)J1(y); W1(x, y) = J1(x)Y1(y)− Y1(x)J1(y);

N2
j,m = a2

0W
2
0 (µj,ma0, µj,ma0)− a2

j (1 + γ2
j µ

−2
j,m)W 2

0 (µj,maj , µj,ma0).

Here, Iν(z) and Kν(z) are the modified Bessel functions of the first and second kind of order ν, Jν(z) and Yν(z) are
the Bessel functions of the first and second kind of order ν, and erfc (z) is the error function [2]. The eigenvalues µj,m

are the roots of the transcendental equation

µjW1(µjaj , µja0)± γjW0(µjaj , µja0) = 0.

The upper and lower signs in the combinations ± and ∓ refer to the inner cylinder (j = 1) and to the outer
cylinder (j = 2), respectively.

We invert the Fourier transform of the integral representation of radial displacements on the contact surface
of the cylinders (see relation (2.15) in [1]) obtained with stresses set at the boundaries of the cylinders; for r = a0,
we write the following expression:

u(j)
r (a0, z, τ) =

1− ν2
j

Ej

(a0

π

∞∫
−∞

p(t, τ) ∆1(aj , t− z) dt

− aj

2π

∞∫
−∞

∞∫
−∞

qj(t, τ) exp (iξ(t− z))∆̄2(aj , ξ) dt dξ
)

+
αj

π
∂τ

τ∫
0

∞∫
−∞

fj(t, η)Hj(t− z, τ − η) dt dη.

Here,

∆1(aj , z) =

∞∫
0

∆̄1(aj , ξ) cos (ξz) dξ; Hj(z, τ) =

∞∫
0

(H̄j,st(ξ) + H̄j,0(ξ, τ)) cos (ξz) dξ;

H̄j,st(ξ) = (1− ν2
j )ξ−2[∆̄2(aj , ξ)∂rΦ̄j,st(aj , ξ)∓ (∆̄1(aj , ξ)− (1− νj)−1)];

H̄j,0(ξ, τ) = ±2(1 + νj)a0

∞∑
m=1

W0(µj,ma0, µj,ma0)
N2

j,m(ξ2 + µ2
j,m)2

[
ξ2(∆̄1(aj , ξ)a0W0(µj,ma0, µj,ma0)

− ∆̄2(aj , ξ)ajW0(µj,maj , µj,ma0)) + ∆̄3(aj , ξ)µj,mW1(µj,maj , µj,ma0)
]
exp (−kj(ξ2 + µ2

j,m)τ);

∆̄j(aj , ξ) = ∆̃j(aj , ξ)∆̃−1
0 (aj , ξ);

∆̃0(aj , ξ) = 4(1− νj) + a2
jξ

2 + a2
0ξ

2 + (2(1− νj) + a2
jξ

2)(2(1− νj) + a2
0ξ

2)

× [I1(ajξ)K1(a0ξ)− I1(a0ξ)K1(ajξ)]2 − a2
jξ

2(2(1− νj) + a2
0ξ

2)

× [I0(ajξ)K1(a0ξ) + I1(a0ξ)K0(ajξ)]2 − a2
0ξ

2(2(1− νj) + a2
jξ

2)

× [I1(ajξ)K0(a0ξ) + I0(a0ξ)K1(ajξ)]2 + a2
ja

2
0ξ

4[I0(ajξ)K0(a0ξ)− I0(a0ξ)K0(ajξ)]2;
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∆̃1(aj , ξ) = 2
[
1+(2(1−νj)+a2

jξ
2)[I1(ajξ)K1(a0ξ)− I1(a0ξ)K1(ajξ)]2−a2

jξ
2[I0(ajξ)K1(a0ξ)+ I1(a0ξ)K0(ajξ)]2

]
;

∆̃2(aj , ξ) = 2a0ξ[I1(ajξ)K0(a0ξ) + I0(a0ξ)K1(ajξ)]− 2ajξ[I0(ajξ)K1(a0ξ) + I1(a0ξ)K0(ajξ)];

∆̃3(aj , ξ) = 2
[
(2(1− νj) + a2

jξ
2)[I1(ajξ)K1(a0ξ)− I1(a0ξ)K1(ajξ)]− aja0ξ

2[I0(ajξ)K0(a0ξ)− I0(a0ξ)K0(ajξ)]
]
.

To find the unknown contact pressure p(z, τ) and the functions fj(z, τ), we use the thermophysical contact
conditions (1)–(5) and the condition of equality for displacements in (6); with these conditions fulfilled, we obtain
the following systems of equations:

— in the loaded contact zone,

λ1f1(z, τ) + λ2f2(z, τ) = fω(τ)a0p(z, τ),

2∑
k=1

(−1)k−1
[
λkfk(z, τ) +

ha

π
∂τ

τ∫
0

∞∫
−∞

fk(t, η) Φk(a0, t− z, τ − η) dt dη
]

= 0,

a0E0

π

∞∫
−∞

p(t, τ)
[ 2∑

k=1

(−1)k 1− ν2
k

Ek
∆1(ak, t− z)

]
dt+

2∑
k=1

(−1)kαkE0

π
∂τ

τ∫
0

∞∫
−∞

fk(t, η)Hk(t− z, τ − η) dt dη

=
2∑

k=1

(−1)k 1− ν2
k

Ek

akE0

π

∞∫
−∞

∞∫
−∞

qj(t, τ) exp (iξ(t− z))∆̄2(aj , ξ) dt dξ,

where E0 = (2((1− ν2
1)/E1 + (1− ν2

2)/E2))−1;
— in the unloaded contact zone,

λjfj(z, τ) + hc

2∑
k=1

(−1)k+j 1
π
∂τ

τ∫
0

∞∫
−∞

fk(t, η) Φk(a0, t− z, τ − η) dt dη = 0 (j = 1, 2), p(z, τ) = 0; (8)

— in the separation zone, depending on the chosen model or condition either the condition

f1(z, τ) = f2(z, τ) = p(z, τ) = 0,

or conditions of type (8) with hc replaced by hb. Here, as was noted above, the boundaries between the contact
zones are initially unknown.

Definition and Construction of the Numerical Algorithm. To construct the solution of such a system
of equations, we propose a numerical algorithm that involves the results of [1] and some specific properties of the
above-obtained functions (it can be stated that Φj(r, z, 0) = 0 and Hj(z, 0) = 0).

We divide the time interval [0, τ∗] in which the behavior of the tribosystem is examined into N segments by
choosing the times τi = iτ1 (i = 0, . . . , N), where τN = τ∗, and perform time discretization of the integrals

F (z, τ) =
1
π
∂τ

τ∫
0

∞∫
−∞

f(t, η) Φ(t− z, τ − η) dt dη [Φ(z, 0) = 0]

by the scheme

F (z, 0) = 0, F (z, τ1) = 0.5G(z, τ1,1) + 0.25G(z, τ0,2),

F (z, τ2) = 0.5G(z, τ2,1) + 0.5G(z, τ1,2) + 0.25(G(z, τ0,3)−G(z, τ0,1)),

F (z, τn) = 0.5G(z, τn,1) + 0.5G(z, τn−1,2)

+ 0.5
n−2∑
k=1

(G(z, τk,n+1−k)−G(z, τk,n−1−k)) + 0.25(G(z, τ0,n+1)−G(z, τ0,n−1)) (n > 3).
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Here

G(z, τi,j) =
1
π

∞∫
−∞

f(t, τi)Φ(t− z, τj) dt.

Then, we obtain the following systems of equations for each time τi (i = 0, . . . , N):
— in the loaded contact zone,

λ1f1(z, τi) + λ2f2(z, τi) = fω(τi)a0p(z, τi),

2∑
k=1

(−1)k−1
[
λkfk(z, τi) +

ha

2π

∞∫
−∞

fk(t, τi) Φk(a0, t− z, τ1) dt
]

= ha

2∑
k=1

(−1)kR′k(a0, z, τi), (9)

a0E0

π

∞∫
−∞

p(t, τi)
[ 2∑

k=1

(−1)k 1− ν2
k

Ek
∆1(ak, t− z)

]
dt

+
2∑

k=1

(−1)kαkE0

2π

∞∫
−∞

fk(t, τi)Hk(t− z, τ1) dt =
2∑

k=1

(−1)k 1− ν2
k

Ek

akE0

π

×
∞∫

−∞

∞∫
−∞

qk(t, τi) ∆̄2(ak, ξ) exp (iξ(t− z)) dt dξ + E0

2∑
k=1

(−1)k−1αkR
′′
k(z, τi);

— in the unloaded contact zone,

λjfj(z, τi) + hc

2∑
k=1

(−1)k+j 1
2π

∞∫
−∞

fk(t, τi) Φk(a0, t− z, τ1) dt = hc

2∑
k=1

(−1)k+j−1R′k(a0, z, τi),

p(z, τi) = 0;
(10)

— in the separation zone,
f1(z, τi) = f2(z, τi) = p(z, τi) = 0. (11)

Here
R′k(r, z, 0) = 0; R′k(r, z, τ1) = 0.25G′k(r, z, τ0,2);

R′k(r, z, τ2) = 0.5G′k(r, z, τ1,2) + 0.25(G′k(r, z, τ0,3)−G′k(r, z, τ0,1));

R′k(r, z, τn) = 0.5G′k(r, z, τn−1,2) + 0.5
n−2∑
`=1

(
G′k(r, z, τ`,n+1−`)−G′k(r, z, τ`,n−1−`)

)
+ 0.25

(
G′k(r, z, τ0,n+1)−G′k(r, z, τ0,n−1)

)
(n > 3);

G′k(r, z, τi,j) =
1
π

∞∫
−∞

fk(t, τi) Φk(r, t− z, τj) dt;

the function R′′k is defined similarly to R′k if

G′′k(z, τi,j) =
1
π

∞∫
−∞

fk(t, τi)Hk(t− z, τj) dt.

For the temperature, we have the relation

Tj(r, z, τi) =
1
2π

∞∫
−∞

fj(t, τi)Φj(r, t− z, τ1) dt+R′j(r, z, τi).
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We consider the properties of the kernels ∆(aj , z), Hj(z, τ), and Φj(r, z, τ). Since

∆̄1(aj , 0) = (1− ν2
j )−1

(a2
j + a2

0

a2
j − a2

0

+ νj

)
,

Φ̄j(r, 0, τ) = a0(± ln(r/aj) + (ajγj)−1)

∓ 2a0

∞∑
m=1

W0(µj,mr, µj,ma0)W0(µj,ma0, µj,ma0)
µ2

j,mN
2
j,m

exp (−kjµ
2
j,mτ),

H̄j(0, τ) = ±a2
0

[ a2
0

a2
0 − a2

j

ln
(a0

aj

)
− 0.5± 1

ajγj

+
4aj

a2
0 − a2

j

∞∑
m=1

W1(µj,maj , µj,ma0)W0(µj,ma0, µj,ma0)
N2

j,mµ
3
j,m

exp (−kjµ
2
j,mτ)

]
,

and, as ξ →∞,

∆̄1(aj , ξ) ≈ ∓2(a0ξ)−1, Φ̄j(r, ξ, τ) ≈ Φ̄j,st(r, ξ) ≈ ξ−1
√
a0/r exp (∓ξ(a0 − r)),

H̄j(ξ, τ) ≈ H̄j,st(ξ) ≈ ±(1 + νj)/ξ2 (τ > 0),

then, based on the results obtained in [3], we can argue that the kernels

∆(z) =

∞∫
0

∆̄(ξ) cos(ξz) dξ = a0E0

∞∫
0

[ 2∑
k=1

(−1)k 1− ν2
k

Ek
∆̄1(ak, ξ)

]
cos (ξz) dξ

and Φj,st(a0, z) have a logarithmic singularity, whereas the kernels Hj(ξ, τ) and Φj,st(r, z) (at r 6= a0) are regular.
Then,

∆(z) = K0(|z|) +

λ1∫
0

∆̄(ξ) cos (ξz) dξ − ln (2λ1) (z = 0),

∆(z) = K0(|z|) +

λ1∫
0

∆̄(ξ) cos (ξz) dξ − Ci (λ1|z|)−K0(|z|) (z 6= 0),

Hj(z, τ) =

λj,2∫
0

H̄j(ξ, τ) cos (ξz) dξ ± (1 + νj)
[cos (λj,2z)

λj,2
+ |z|

(
Si (λj,2|z|)−

π

2

)]
,

Φj,st(a0, z) = K0(|z|) +

λj,3∫
0

Φ̄j,st(a0, ξ) cos (ξz) dξ − ln (2λj,3) (z = 0),

Φj,st(a0, z) = K0(|z|) +

λj,3∫
0

Φ̄j,st(a0, ξ) cos (ξz) dξ − Ci (λj,3|z|)−K0(|z|) (z 6= 0),

Φj,st(r, z) =

λj,3∫
0

Φ̄j,st(r, ξ) cos (ξz) dξ +
1
2

√
a0

r

2∑
k=1

E1(±λj,3(a0 − r + (−1)k−1iz)) (r 6= a0),

where i2 = −1, Si(z) and Ci(z) are the integral sine and cosine; E1(z) is the integral exponential [2]. We take into
account that K0(z) ≈ ln (2/z)− γ as z → 0 (γ is the Euler constant) [2].
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The integration boundaries λj,k were chosen so that the integrands in the Fourier integrals over the intervals
(λj,k,∞) could be replaced by their asymptotic expressions. We find the values of the integrals over the intervals
[0, λj,k] by numerical integration, using the Filon method [4].

We represent the right side of the third integral equation in (9) as

2∑
k=1

(−1)k 1− ν2
k

Ek

akE0

π

∞∫
−∞

∞∫
−∞

qk(t, τ) ∆̄2(ak, ξ) exp (iξ(t− z)) dt dξ

=
1− ν2

2

E2

2a2E0

π
q(τ)(I0(L+ z) + I0(L− z)),

I0(z) =

λ4∫
0

∆̄2(a2, ξ)− ∆̄2(a2, 0)
ξ

sin (ξz) dξ

+ ∆̄2(a2, 0) Si (λ4z) +
2(a2 − a0)
i
√
a2a0

2∑
k=1

(−1)k−1E1(λ4(a2 − a0 + (−1)kiz)).

The inner surface of the tribosystem is free of stresses, and the load on the outer surface is a function symmetric
about the plane z = 0, which varies according to the law

q1(z, τ) = 0, q2(z, τ) = q(τ)H(L− |z|)

[H(z) is the Heaviside function]. Here, we take into account that the kernel ∆̄2(a2, ξ) has the following properties:

∆̄2(a2, 0) =
1

1− ν2
2

2a0a2

a2
2 − a2

0

, ∆̄2(a2, ξ)|ξ→∞ ≈ 4(a2 − a0)√
a2a0

exp (−ξ(a2 − a0)).

An analysis of system (9)–(11) shows that p(z, τk) at any time τk (k = 0, . . . , N) is a bounded and continuous
function and fj(z, τk) is a bounded function that has a limited number of local extrema and first-kind discontinuity
points; in other words, these functions satisfy the Dirichlet conditions [5]. We take into account that the loading
symmetry guaranties the symmetry of the solution and, in particular, the symmetry of the contact pressure and
the functions fj(z, τk) relative to the plane z = 0; then, we represent these functions in the domain z ∈ [0,∞) as
truncated series in generalized Laguerre polynomials [6]:

p(z, τk) =
exp (−z)√

z

M∑
m=0

Bm(τk)L(−1/2)
m (2z),

fj(z, τk) =
exp (−z)√

z

M∑
m=0

Cj,m(τk)L(−1/2)
m (2z).

(12)

We substitute expressions (12) into system (9)–(11) to subsequently pass from integrals over the interval
(−∞,∞) to integrals over the interval [0,∞), using the following scheme [ψ(−z, τ) = ψ(z, τ)]:

∞∫
−∞

ψ(t, τk)Ψ(t− z, τk) dt =

∞∫
0

ψ(t, τk)(Ψ(t− z, τk) + Ψ(t+ z, τk)) dt.

By means of the relations [7]

1
π

∞∫
0

exp(−y)
√
y

K0(|x− y|)L(−1/2)
m (2y) dy =

√
π

2
(2m− 1)!!

(2m)!!
exp (−x)L(−1/2)

m (2x)

((−1)!! = 0!! = 1, (2m− 1)!! = 1 · 3 · · · (2m− 1), (2m)!! = 2 · 4 · · · (2m)),

the integrals with a logarithmic singularity can be calculated exactly, and the regular integrals can be found
approximately using the quadrature formula [8]
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∞∫
0

exp(−x)√
x

f(x) dx =
M+1∑
i=1

wif(xi),

where

wi =
√
π(2M + 1)!!xi

(2M + 2)!!((M + 2)L(−1/2)
M+2 (xi))2

are the weighting coefficients and xi are the zeroes of the Laguerre polynomial L(−1/2)
M+1 (x), i = 1, . . . ,M + 1.

To find the unknown coefficients Bm(τk) and Cj,m(τk), we apply, at each time τk, the collocation method [9],
selecting a set of (generally not equidistant) points zm (m = 0, . . . ,M). Then, the system reduces to a system
of linear algebraic equations of dimension [3(M + 1) × 3(M + 1)] for the unknown coefficients that define the
distribution of the contact pressure and the variation of the functions fj along the z axis at that time. Here, the
following remarks have to be made.

Remark 1. The expansion coefficients are calculated in several stages.
First, we consider only system (9) of integral equations on the chosen set of points. We solve the resultant

system of linear algebraic equations, find the distribution of the contact pressure, and check if the conditions
p(zm, τk) > 0 are fulfilled.

Then, at the points zm where the contact pressure is negative, we satisfy conditions (11) or conditions of
type (10) with hc substituted by hb. The beginning of the unloaded contact zone (point zm0) can be found from
the condition |p(zm, τk)| < ε (ε ≈ 10−5) for all values m0 6 m 6 M . At the points zm of this zone, conditions (10)
are satisfied. This procedure is repeated until the contact pressure reverses its sign.

Remark 2. The possibility of neglecting the solution of the system over the interval [zM ,∞) is based on the
fact that the contact pressure and temperature vanish rather rapidly [1]. At a distance of 10L (L is the parameter
that defines the interval of application of the uniformly distributed load), these quantities differ little from zero. It
should be noted that discontinuous functions fj(z, τk) are approximated here; for this reason, the number of division
points zm and, hence, the number of terms in expansions (12) should be rather large. As the calculations showed,
for M = 200 and a uniform grid chosen over the interval z ∈ [0, 2L] with a step L/40, the relative calculation error
is within 3%. The time step was chosen equal to τ1 = 1 sec, and a uniform grid with a step L/15 was chosen
over the interval (2L, 10L). The calculation accuracy was verified by reducing the intervals over the time and the
z coordinate, and also by doubling the integration interval. Sums (12) were calculated by the Fejér method [5].

Analysis of Results and Conclusions. The problem was numerically analyzed for the “steel–steel”
friction pair (Ej = 2 · 105 MPa, νj = 0.3, λj = 50 W/(m ·K), and kj = 0.125 · 10−4 m2/sec) with the following
values of the governing parameters: ha = 10 kW/(m2 ·K), f = 0.1, γ1 = γ2 = 20 m−1, a1 = 3.5 cm, a0 = 5 cm,
a2 = 6 cm, α1 = (1–15) · 10−6 K−1, and α2 = 12 · 10−6 K−1. In this case, conditions (11) are satisfied in the
separation zone, and the thermal conductivity coefficient in the loaded contact zone is hc = 0.5ha. The load applied
to the surface r = a2 and the relative angular velocity of revolution vary according to the laws

q2(z, τ) = qst(z)(1− exp (−βτ)), ω(τ) = ω0;

q2(z, τ) = qst(z), ω(τ) = ω0(1− exp (−βτ)),

where qst(z) = q0H(L− |z|). Here, q0 = 20 MPa, ω0 = 0–2 rad/sec, β = 0.01 sec−1, and L = 0.1 m. As was noted
above, the surface r = a1 is free of the load.

Below, we report some results of a numerical analysis of the problem. Figure 1 shows the distribution of
the stationary contact pressure. Depending on the relation between the linear thermal expansion coefficients of the
cylinders, three interaction mechanisms are possible:

— If α1 � α2, then the cylinders contact each other in a restricted region in the case of a simply connected
region of loading;

— If α1 ≈ α2, then the loaded contact region is multiply connected;
— If α1 > α2, then the cylinders contact each other over their entire surface area.
It should be noted here that an increase in heat-release intensity due to increasing ω0 causes a decrease in

the contact area and in the contact pressure if α1 < α2. Alternatively, if α1 > α2, then an increase in ω0 results in
an increase in pst(z). The range of ω0 > 0 is bounded by some critical value ωcr [1].
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Fig. 1. Distributions of stationary contact pressure for different values of α1 (α2 = 12 · 10−6 K−1

and ω0 = 1 rad/sec): α1 = 15 · 10−6 (1), 12 · 10−6 (2), 9 · 10−6 (3), and 6 · 10−6 K−1 (4); curve 5
refer to the contact pressure in elastic interaction (ω0 = 0).
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Fig. 2. Distributions of stationary contact pressure in the approximate (dashed curves) and refined
(solid curves) formulations of the problem: curves 1 and 2 refer to α1 = 15 · 10−6 and 6 · 10−6 K−1,
respectively; curves 3 refer to the contact pressure during elastic interaction.

Fig. 3. Distributions of stationary temperature on the surface r = a0 for α1 = 15 · 10−6 (1),
12 · 10−6 (2), 9 · 10−6 (3), and 6 · 10−6 K−1 (4); the solid curves show the refined formulation of the
problem; the dashed curves refer to the approximate formulation of the problem.

For comparison, the dashed curves in Fig. 2 show the distributions of contact pressure calculated under the
assumption that the cylinder are in intimate contact [1]. As it could be expected, the curves of contact pressure
obtained for α1 = 15 · 10−6 K−1 in the approximate and refined (with allowance for separation) formulations
coincide. An insignificant difference between the contact-pressure distributions obtained for the elastic interaction
in the approximate and refined formulations can be attributed to the fact that the tribosystem here is self-balanced,
i.e., unlike classical contact problems, there is no integral condition of equality of sums of contact stresses to the

720



z, m0.1 0.2

p, MPa

2

3

4

5

10

20

0

4 3
5

5

4 3
5

2

1

3

4

z, m0.1 0.2

p, MPa

10

20

0

à b

Fig. 4. Distributions of pressure in the stationary formulation of the problem (dashed curves) and distri-
butions of nonstationary contact pressure (solid curves) under varied load (a) and under varied angular
velocity of revolution (b): τ = 0 (1), 50 (2), 100 (3), 200 (4), and 400 sec (4) (α1 = 15 · 10−6 K−1,
α2 = 12 · 10−6 K−1, and ω0 = 1 rad/sec).
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Fig. 5. Distributions of pressure in the stationary formulation of the problem (dashed curves) and dis-
tributions of nonstationary contact pressure (solid curves) at various times τ for α1 = 6 · 10−6 K−1 and
α2 = 12 · 10−6 K−1 (notation the same as in Fig. 4.)

pressing force in the problem under consideration. The difference between the distributions pst(z) obtained in the
approximate and refined formulations for α1 = 6 · 10−6 K−1 can be attributed to the variation of thermal boundary
conditions in the separation zone.

The difference in the thermal boundary conditions in the separation zone is also responsible for the behavior
of temperature distributions on the surface r = a0 in the approximate and refined formulations (Fig. 3). Curves 1–4
in Fig. 3 are plotted for the conditions of Fig. 1; the upper and lower curve in each group refer to the inner and
outer cylinders, respectively.
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Fig. 6. Distributions of stationary temperature (curves drawn through
crosses) and distributions of nonstationary temperature for τ = 50 (1),
100 (2), 200 (3), 400 (4), and 600 sec (5) (α1 = α2 = 12 · 10−6 K−1);
the solid and dashed curves refer to for time-dependent ω and load,
respectively.

An examination of the solution of the quasi-static problem shows that, provided that the condition ω0 < ωcr is
fulfilled, the contact stress monotonically reaches the corresponding stationary value, and its behavior is determined
by the chosen time dependences of the load and angular velocity of revolution. In the first case (time-dependent
load), the contact area (for α1 < α2) remains unchanged (Fig. 4a), whereas in the second case it monotonically
decreases (Fig. 4b). For α1 � α2, the effect of multiple connectedness of the contact region is manifested as the
contact stresses reach the steady value (complete contact).

Figures 4 and 5 shows the distributions of contact pressure during nonstationary heat release caused by the
variation of the load and angular velocity of revolution in time. In both cases, the load and the angular velocity
of revolution, whose values reach a stationary value during the time τ = 450 sec, determine the duration of the
transient process for contact stresses of the order of 600–700 sec.

The temperature of the contact surface reaches a stationary value more slowly (approximately in 800 sec),
and the duration of the transient process increases with distance from the surface r = a0. Figure 6 shows the
distributions of temperature over the surface r = a0 for each cylinder, which were obtained that the cylinders have
identical linear thermal expansion coefficients. The upper and lower curves in each group refer to j = 1 and j = 2,
respectively.

Generally speaking, in problems where separation is possible, conditions of an imperfect thermal contact
should be set at the interface between the layers. In this case, in view of complexity of determination of the
thermal conductivity coefficients in each zone, it is reasonable to introduce one averaged coefficient. In other words,
mixed mechanical conditions are set at the interface, and one thermal condition is specified over the entire surface.
A numerical analysis of the problem performed for this case showed that, provided that the averaged thermal
conductivity coefficient of the contact surface coincides with the thermal conductivity coefficient of the loaded
contact zone, the contact stresses differ from the stresses obtained under mixed thermal conditions within 1%, and
the character of the difference between the thermoelastic contact stresses obtained in the approximate and refined
formulations is similar to the case of elastic interaction (curve 3 in Fig. 2).
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